Car workshop
0 View
Article Rating
1 звезда2 звезды3 звезды4 звезды5 звезд

How often do SSD drives fail?

Why SSDs Die a Sudden Death (and How to Deal with It)

In our previous article Life after Trim: Using Factory Access Mode for Imaging SSD Drives we only mentioned reliability of SSD drives briefly. As you may know, NAND flash memory can sustain a limited number of write operations. Manufacturers of today’s consumer SSD drives usually guarantee about 150 to 1200 write cycles before the warranty runs out. This can lead to the conclusion that a NAND flash cell can sustain up to 1200 write cycles, and that an SSD drive can actually survive more than a thousand complete rewrites regardless of other conditions. This, however, is not fully correct. Certain usage conditions and certain types of load can wear SSD drives significantly faster compared to their declared endurance. In this article, we’ll look why a perfectly healthy SSD drive with 98-99% remaining life can die a sudden death. We’ll also give recommendations on tools and approaches that can get the data back even if the SSD drive is corrupted or does not appear in the system.

NAND Flash Endurance: Expectations vs. Reality

Major SSD manufacturers such as Crucial and Samsung are offering 5-year limited warranties to their recent models. The manufacturers specify the maximum amount of data that can be written to an SSD drive during the warranty period.

For example, this is what Crucial and Samsung promise for their recent SSD series.

Endurance Rating2TB1TB500GB250GB
Crucial MX500 (3D TLC) – TBW (Terabytes Written)700TB360TB180TB100TB
Samsung 860 EVO (3D TLC) – TBW (Terabytes Written)1200TB600TB300TB150TB
Samsung 860 PRO (3D MLC) – TBW (Terabytes Written)2400TB1200TB600TB300TB

Independent researchers appear to confirm manufacturers’ stated endurance ratings. This TechReport test is fairly old, but their findings are consistent with the recent ongoing tests by “All of the drives surpassed their official endurance specifications by writing hundreds of terabytes without issue. Delivering on the manufacturer-guaranteed write tolerance wouldn’t normally be cause for celebration, but the scale makes this achievement important”, concluded TechReport’s Geoff Gasior. Long-term testing of multiple SSD models performed by 3DNews suggests that even mid-range SSD drives can be overwritten many thousand times before their flash memory starts showing signs of degradation. This, however, does not explain why some users have their SSD drives fail well within their warranty periods after overwriting the SSD just 20 to 30 times (with 98-99% of the rated lifespan still remaining).

The thing is, today’s TLC flash cannot sustain thousands of write cycles without significant degradation. In fact, a typical cell can sustain 20 to 50 write/erase cycles before it starts leaking charge. Low-quality NAND flash can be less robust, while SLC caching can improve the number of write cycles, yet the end result is the same: a NAND cell becomes less reliable in retaining electrons.

So how do these numbers relate to manufacturers’ declared endurance of more than 1000 write cycles, and how reliable are those SSD drives after all? Let’s try to find out.

Speaking of wear, each write operation slightly damages a NAND cell. Writing a single bit of data in SLC mode requires lower voltage compared to writing multiple bits of data in MLC or TLC mode. As a result, MLC or TLC based SSD drives equipped with SLC cache can sustain significantly higher load (especially random writes) compared to lower-cost counterparts that don’t have SLC cache. In some scenarios involving frequent writes of small chunks of data, the use of SLC cache can boost SSD’s real endurance up to 100 times compared to SSD drives without SLC cache:

After a certain number of program/erase cycles, NAND cells can no longer retain charge and start leaking electrons. One can still write data in worn out cells; the data can be read back successfully immediately after write. However, the cells will leak charge, and will only retain data for some very limited time.

Let us do an imaginary test and write “1 0 0” into a TLC cell. Immediately after writing, we could read the cell successfully; the charge would still correspond to “1 0 0”. We power off the SSD drive and let it sit for two days, then power it back on and read the cell. The charge is still “1 0 0”. Let’s power it off again, this time for two weeks. After reading the cell in two weeks’ time, the charge is now at a “0 1 0” level. Two more weeks, and the charge is “0 0 1”, followed by “0 0 0” in two more weeks.

How do you manually charge a car battery?

The time a NAND cell can retain charge after a certain number of programming cycles is a major criteria when calculating the endurance rating. Most NAND flash manufacturers specify that cells must retain charge for at least two weeks at high temperatures (e.g. in data center environment). This time is significantly longer at home temperatures. During the specified retention period some cells are allowed to leak charge, but such bit errors must be correctable via ECC.

Two weeks is scary; in real life, reputable manufacturers use NAND chips that significantly exceed the minimum specifications.

What happens to NAND flash chips that do not pass SSD OEMs’ stringent requirements? There is never lack of demand for low-cost sub-standard NAND chips. Third-tier manufacturers such as Kingspec, Smartbuy or Silicon Power purchase such inexpensive chips in bulk, producing low-cost SSD drives with varying reliability. Alternatively, manufacturers can still use sub-standard NAND chips in their SSDs by boosting the number of reserved blocks (and selling SSD units with lower advertised capacity, e.g. 480 GB as opposed to 500 GB). Yet another alternative (mainly employed by Crucial/Micron) would be using sub-standard TLC chips in MLC mode, which significantly boosts reliability. A great example of the last two approaches combined is Crucial BX300, a 3D MLC drive with 480 GB advertised capacity.

High temperatures negatively affect the ability of NAND flash to retain charge. As the temperature increases, the electrons escape the floating gate faster. This cell loses charge, and the data becomes unreadable. ACELab performed a controlled test in an attempt to verify the effect of high temperatures on the ability of NAND cells to retain charge. The test was conducted on an old SLC chip, which was able to sustain the temperature of +480C. Heated beyond this temperature, the chip was physically damaged. Notably, today’s MLC and TLC chips started experiencing bit errors at significantly lower temperatures. For this reason, some experts prefer using heated wires to cut chips off the PCB instead of unsoldering.

While we only need 3.3V to read data, we must supply 12V to erase or program cells. The higher voltage is required to place electrons in the NAND cell. As higher voltages are applied, the insulating layer between cells starts degrading, allowing more electrons escape as the time passes. The thinner the isolation layer becomes, the faster it will start to degrade, and the less program/erase cycles a cell can sustain.

Samsung Evo 840, one of the early SSD drives based on planar TLC flash, was an excellent example. The manufacturer was overly optimistic when estimating lifespan of the then-new TLC flash cells. The cells degraded significantly faster than planned. Unable to withstand even the modest 20 to 30 program/erase cycles, the cells leaked charge in powered-off state extremely fast. Many users lost data from unpowered Evo 840 drives after only 30 days of storage. Samsung fixed the issue with a firmware update, which didn’t help correcting a hardware problem. The second fix added a background process that “refreshed” the content of affected NAND cells by periodically erasing/rewriting their content. Needless to say, the fix negatively affected real-life endurance of the drives, wearing cells much faster than planned. As a result, Samsung Evo 840 got a well-deserved reputation of the worst SSD drive in history.

Manufacturers learned their lesson and stopped using planar TLC memory in new models, switching to the much more robust 3D NAND instead. This is how 3D TLC NAND stacks against planar MLC and planar TLC types:

What is the max speed of DDR4 RAM?

(Source: 3D TLC NAND To Beat MLC as Top Flash Storage EE|Times)

There are other technologies that are used to increase lifespan of the NAND cells. For example, many manufacturers dedicate part of the drive’s capacity as SLC cache. Writing data into a TLC cell in SLC more requires lower voltage, and has significantly smaller negative effect on the cell’s isolation layer. SLC cache is extremely effective if the SSD drive is used in environments with a frequent writes of small data blocks (e.g. databases). Constant firmware refinements allowed drastically reducing write amplification, which reduces the number of program/erase cycles required to store the same amounts of data.

Why SSD Drives Fail with no SMART Errors

SSD drives are designed to sustain multiple overwrites of its entire capacity. Manufacturers warrant their drives for hundreds or even thousands complete overwrites. The Total Bytes Written (TBE) parameter grows with each generation, yet we’ve seen multiple SSD drives fail significantly sooner than expected. We’ve seen SSD drives fail with as much as 99% of their rated lifespan remaining, with clean SMART attributes. This would be difficult to attribute to manufacturing defects or bad NAND flash as those typically account for around 2% of devices. Manufacturing defects aside, why can an SSD fail prematurely with clean SMART attributes?

Each SSD drive has a dedicated system area. The system area contains SSD firmware (the microcode to boot the controller) and system structures. The size of the system area is in the range of 4 to 12 GB. In this area, the SSD controller stores system structures called “modules”. Modules contain essential data such as translation tables, parts of microcode that deal with the media encryption key, SMART attributes and so on.

If you have read our previous article, you are aware of the fact that SSD drives actively remap addresses of logical blocks, pointing the same logical address to various physical NAND cells in order to level wear and boost write speeds. Unfortunately, in most (all?) SSD drives the physical location of the system area must remain constant. It cannot be remapped; wear leveling is not applicable to at least some modules in the system area. This in turn means that a constant flow of individual write operations, each modifying the content of the translation table, will write into the same physical NAND cells over and over again. This is exactly why we are not fully convinced by endurance tests such as those performed by 3DNews. Such tests rely on a stream of data being written onto the SSD drive in a constant flow, which loads the SSD drive in unrealistic manner. On the other side of the spectrum are users whose SSD drives are exposed to frequent small write operations (sometimes several hundred operations per second). In this mode, there is very little data actually written onto the SSD drive (and thus very modest TBW values). However, system areas are stressed severely being constantly overwritten.

Such usage scenarios will cause premature wear on the system area without any meaningful indication in any SMART parameters. As a result, a perfectly healthy SSD with 98-99% of remaining lifespan can suddenly disappear from the system. At this point, the SSD controller cannot perform successful ECC corrections of essential information stored in the system area. The SSD disappears from the computer’s BIOS or appears as empty/uninitialized/unformatted media.

If the SSD drive does not appear in the computer’s BIOS, it may mean its controller is in a bootloop. Internally, the following cyclic process occurs. The controller attempts to load microcode from NAND chips into the controller’s RAM; an error occurs; the controller retries; an error occurs; etc.

However, the most frequent point of failure are errors in the translation module that maps physical blocks to logical addresses. If this error occurs, the SSD will be recognized as a device in the computer’s BIOS. However, the user will be unable to access information; the SSD will appear as uninitialized (raw) media, or will advertise a significantly smaller storage capacity (e.g. 2MB instead of the real capacity of 960GB). At this point, it is impossible to recover data using any methods available at home (e.g. the many undelete/data recovery tools).

Does Tesla use Python or C?

Data Recovery through Factory Access Mode

You can still attempt to recover information from a failed SSD drive if it does not appear in the system or is recognized as raw media. Do not try using data recovery tools you can download from the Internet; none of those can break the bootloop or activate the drive’s factory access mode. (In case you missed it, we have a comprehensive article explaining SSDs’ factory access mode: Life after Trim: Using Factory Access Mode for Imaging SSD Drives).

The only thing one can do other than sending the disk to the manufacturer is using the disk’s factory access mode. Factory access mode is built into all SSD drives, no exceptions. Large data recovery services and authorized service facilities of major manufacturers have tools that can activate factory access mode, rebuild corrupted translation tables and read information off the chips. Unfortunately, many small OEMs selling budget SSD drives built with off the shelf parts and using B-stock NAND chips do not have any repair facilities at all. For those manufacturers dumping the broken SSD drive and just mailing a replacement is far easier than building and maintaining a repair facility. If this is the case, finding a reputable independent data recovery service will be the only way to access information.

Windows 10 Operating System Will Warn Users of SSD Failure

Windows 10 Operating System Will Warn Users of SSD Failure

When a hard disk drive (HDD) is on the brink of failure, users can easily tell by the physical signs like grinding or clicking noises, the computer running slowly, or missing files after a power surge. But what about solid-state drives (SSD)? These non-mechanical storage devices don’t have the moving parts that indicate a physical failure. A new feature may be coming to Windows 10 that alerts users of a potential drive failure before a data disaster occurs.

Laura Bednar Content Writer
Tags: data loss prevention Hard Drive Failure HDD
Category: Data Recovery Knowledgebase

Table of contents

  • Red Alert for Your Data
  • Staying SMART with Hard Drives
  • Prepare for the Worst

Share with

Red Alert for Your Data

Members of the Windows Insider Program, a community of Windows fans who see the latest developments for the operating system, saw this latest SSD failure warning in the Windows 10 Insider Preview platform. They can preview the new feature on the platform, and give feedback directly to the web developers to help shape the functionality of the OS.

In this latest Windows Build 20226, a feature designed to detect hardware abnormalities for Non-Volatile Memory Express (NVMe) SSDs was created. This feature notifies users when the device may be at risk of failure and urges them to back up their files after reading the notification.

According to the Windows Insider Blog, a user can click on the notification or go to the drive properties page by going to Settings > System > Storage > Manage disks and volumes > Properties to see more details about the drive’s health. The details include the remaining life of the drive and current temperature of the SSD.

Staying SMART with Hard Drives

SMART, or Self-Monitoring Analysis and Reporting Technology, is a diagnostic tool that gives advance warning of drive failure as well as details on how each component of your drive is functioning. It is included in hard drives manufactured by companies such as IBM, Western Digital, Seagate, and many more.

In the case of the new Windows 10 feature, the monitoring of an SSD would be done through the operating system rather than on the drive itself, which is beneficial if your particular drive model does not have the SMART technology built-in. Even if a drive does have this type of technology, if it is severely damaged, the SMART analysis will not kick in, leaving you with a damaged drive and potential data loss.

What milk is best for Hashimotos?

Prepare for the Worst

Knowing your drive is malfunctioning before it becomes a larger issue is half the battle in preserving information from an electronic device. Regardless of if you have SMART monitoring tools or other hard drive notifications, backing up your files is recommended regularly. You should follow a 3-2-1 backup system with a total of three backups, two on physical storage and one in virtual storage such as the cloud.

If you don’t catch the warning signs of drive failure, you will need professional data recovery services to retrieve your files from the damaged drive. Secure Data Recovery has years of experience working with all HDDs, SSDs, RAIDs, and all other media types. We have an overall 96% success rate in recovery and are available when your drive fails unexpectedly, or you fail to backup your data. Knowing when your drive fails is important, but knowing who can save your files afterwards is crucial. Call us to start a case at 1-800-388-1266.

What is The Lifespan of Hard Drives?

HDD and SSD Lifespan

So, what is a lifespan of a hard drive, and what are the factors that affect it? How about HDD vs SSD? What the stats say? What are the signs of hard drive failure? Does the defragmentation affect the lifespan of it?

Most hard drives come with a limited warranty that covers you only for up to three years. But your hard drive can last longer than that. In fact, it can survive the periodic laptop or desktop upgrade and, many years later, when you dust off your old computer, surprise you by loading all your data and working as smoothly as it always did.

Nevertheless, hard drives tend to be the first components to fail in a system. They contain movable parts which wear out in time. It’s good to know then some stats on how long hard drives last so that you can back up your data and plan ahead upgrades.

After all, you don’t want to lose all your images, documents, and music to a hard disk failure, do you? Find out more about how long hard drives last according to their type and what you can do to extend their lifespan.

What the Stats Say

Let’s start with the facts. A well-known Backblaze study found that roughly 90% of hard drives are still running after three years, and 80% after four years. The online backup service based its analysis on its own system of 25,000 running hard drives, noting each time one of them stopped working.

After four years, the annual failure rate for hard drives grows to over 11.8%. That’s more than twice compared to the first-year rate of 5.1%. After three or four years, many computer users today start thinking already about an upgrade. If you’re among them, you shouldn’t worry too much about upgrading your hard drive before then.

Of course, it’s possible for a brand-new hard drive to fail without warning a day, a week, or a month after it’s mounted, but that doesn’t happen all that often. Major manufacturers test their hard drives and usually don’t deliver dead-on-arrival devices either.

As far as brands are concerned, annual failure rates vary a lot from model to model. For example, the latest data from Backblaze suggests that Seagate hard drives have an annualized failure rate of 0.47% to 2.90%. So it usually pays off to research the specific HDD model you buy rather than the brand as a whole, to see whether other users have complained of HDD failure.

Also, it’s good to note that, according to the study at least, hard drives with a longer warranty tend to last longer. A longer warranty – say three years instead of one – suggests that the manufacturer has more confidence in the quality of the product, and often, this confidence is well-founded.

How do pilots stay calm?

Is It True That SSDs Last Longer?

The differences between hard disk drives (HDD) and solid-state drives (SSD) encompass the lifespan as well. As their name suggests, SSDs don’t have a moving platter or minuscule moving parts that are subject to wear.

The flash technology that SSDs use makes them not only faster than HDDs, but also increases their lifespan, though individual variations between models and brands make this difficult to quantify. Still, SSDs, just like HDDs, are prone to capacitor-related failure.

In the end, there’s no rule that says that a cheap SSD from a lower-tier brand will fail faster than an expensive HDD from a top brand, but that may happen.

Factors That Can Shorten a Hard Drive’s Lifespan

It’s not just the build quality of a hard drive that determines its lifespan. Many hard drives fail because their electric motor stops working. Hard drive failure is also common if the hard drive suffers a physical shock, e.g. if it’s dropped when you try to remove it from your computer, or if the computer itself falls or gets hit.

Here are some other key factors that can kill your hard drive, either slowly or in one fell swoop:

  • Heat – A hard drive that runs all day will heat up more than one that runs just a few hours, though the quality of the chassis’ cooling system can make a difference. Different models have different thresholds past which heat becomes damaging. Hard drives used for servers that run more or less all day are the most vulnerable to the long-term effects of heat.
  • Bad Power Supply – A bad power supply can damage all components, not just hard drives. Usually, power supply problems cause data loss, but if these are constant, or if there is some spike in the electric current that reaches the hard drive, it may damage it irremediably.
  • Vibration – This occurs when a hard drive is not mounted properly and, over time, may cause damage to its moving parts. While vibration is not as bad as a direct shock to the drive, which may kill it outright, it’s best to avoid it.

But what about defragmentation? Can it reduce or prolong your hard drive’s lifespan?

The Impact of Defragmentation on a Hard Drive’s Lifespan

So far, no study that we know of found that defragmenting a hard drive had an impact on its lifespan. It will usually make it run faster but most likely not extend its lifespan, at least not considerably, since as already noted, most hard drive failures are actually mechanical in nature.

That said, defragmenting your hard drive excessively – such as every day – may increase its temperature, which in turn could cause heating. It’s best then to defrag only when you have to, that is, when the fragmentation levels of your drive exceed 5-10%.

Signs of Hard Drive Failure

For most users, hard drive failure is not easy to predict. It usually strikes when it’s least expected. Still, a dying hard drive may come with a few symptoms. Screen freezes and slow performance are perhaps the most common ones, but then these may have many other different causes.

Corrupted data warnings are more alarming, as are grinding or clicking noises coming from the hard disk. If you experience any of these, you should back up your data more often than regularly, just to be sure.

Today, data can almost always be salvaged from a dead hard drive, but at a cost. And it’s not just a question of money but also of privacy, since data recovery services will be able to see the recovered data.

iolo Deals & Best Offers

System Mechanic Ultimate Defense - 87% OFF - Buy Now

Copyright © 2023 GoClickGo Marketing Inc. All rights reserved
All of iolo’s trademarks, logos, web pages, screen shots, or other iolo distinctive features are protected by applicable trademark, copyright, and other intellectual property laws.
All other logos and trademarks are property of their respective owners.

Ссылка на основную публикацию